Uptake, distribution, and speciation of selenoamino acids by human cancer cells: X-ray absorption and fluorescence methods.

نویسندگان

  • Claire M Weekley
  • Jade B Aitken
  • Stefan Vogt
  • Lydia A Finney
  • David J Paterson
  • Martin D de Jonge
  • Daryl L Howard
  • Ian F Musgrave
  • Hugh H Harris
چکیده

Selenium compounds exhibit chemopreventative properties at supranutritional doses, but the efficacy of selenium supplementation in cancer prevention is dependent on the chemical speciation of the selenium supplement and its metabolites. The uptake, speciation, and distribution of the common selenoamino acid supplements, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys), in A549 human lung cancer cells were investigated using X-ray absorption and fluorescence spectroscopies. X-ray absorption spectroscopy of bulk cell pellets treated with the selenoamino acids for 24 h showed that while selenium was found exclusively in carbon-bound forms in SeMet-treated cells, a diselenide component was identified in MeSeCys-treated cells in addition to the carbon-bound selenium species. X-ray fluorescence microscopy of single cells showed that selenium accumulated with sulfur in the perinuclear region of SeMet-treated cells after 24 h, but microprobe selenium X-ray absorption near-edge spectroscopy in this region indicated that selenium was carbon-bound rather than sulfur-bound. X-ray absorption and X-ray fluorescence studies both showed that the selenium content of MeSeCys-treated cells was much lower than that of SeMet-treated cells. Selenium was distributed homogeneously throughout the MeSeCys-treated cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selenium Metabolism in Cancer Cells: The Combined Application of XAS and XFM Techniques to the Problem of Selenium Speciation in Biological Systems

Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect s...

متن کامل

Uptake, Distribution, and Speciation of Selenoamino Acids by Human Cancer Cells: X-ray Absorption and Fluorescence Methods<xref rid="fn1"></xref>

Selenium compounds exhibit chemopreventative properties at supranutritional doses, but the efficacy of selenium supplementation in cancer prevention is dependent on the chemical speciation of the selenium supplement and its metabolites. The uptake, speciation, and distribution of the common selenoamino acid supplements, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys), in A549 hum...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

Radiosensitization effect of ZnO nanoparticles in lung cancer cells at clinically relevant megavoltage energy

Introduction: Radiation therapy is one of the major modalities that have long been used in cancer treatment. Radiotherapy is often accompanied by early and late toxicity and side effects and narrow therapeutic window. Similarity in radiation absorption properties of tumors and neighboring healthy tissues is often the reason for low specificity of radiation therapy. Development ...

متن کامل

ZnO nanofluids for the improved cytotoxicity and cellular uptake of doxorubicin

Objective(s): Combination anticancer therapy holds promise for improving the therapeutic efficacy of chemotherapy drugs such as doxorubicin (DOX) as well as decreasing their dose-limiting side effects. Overcoming the side effects of doxorubicin (DOX) is a major challenge to the effective treatment of cancer. Zinc oxide nanoparticles (ZnO NPs) are emerging as potent tools for a wide variety of b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 50 10  شماره 

صفحات  -

تاریخ انتشار 2011